Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
ACS Synth Biol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525720

ABSTRACT

Ruminant livestock produce around 24% of global anthropogenic methane emissions. Methanogenesis in the animal rumen is significantly inhibited by bromoform, which is abundant in seaweeds of the genus Asparagopsis. This has prompted the development of livestock feed additives based on Asparagopsis to mitigate methane emissions, although this approach alone is unlikely to satisfy global demand. Here we engineer a non-native biosynthesis pathway to produce bromoform in vivo with yeast as an alternative biological source that may enable sustainable, scalable production of bromoform by fermentation. ß-dicarbonyl compounds with low pKa values were identified as essential substrates for bromoform production and enabled bromoform synthesis in engineered Saccharomyces cerevisiae expressing a vanadate-dependent haloperoxidase gene. In addition to providing a potential route to the sustainable biological production of bromoform at scale, this work advances the development of novel microbial biosynthetic pathways for halogenation.

2.
ACS Synth Biol ; 13(1): 141-156, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38084917

ABSTRACT

The variability in phenotypic outcomes among biological replicates in engineered microbial factories presents a captivating mystery. Establishing the association between phenotypic variability and genetic drivers is important to solve this intricate puzzle. We applied a previously developed auxin-inducible depletion of hexokinase 2 as a metabolic engineering strategy for improved nerolidol production in Saccharomyces cerevisiae, and biological replicates exhibit a dichotomy in nerolidol production of either 3.5 or 2.5 g L-1 nerolidol. Harnessing Oxford Nanopore's long-read genomic sequencing, we reveal a potential genetic cause─the chromosome integration of a 2µ sequence-based yeast episomal plasmid, encoding the expression cassettes for nerolidol synthetic enzymes. This finding was reinforced through chromosome integration revalidation, engineering nerolidol and valencene production strains, and generating a diverse pool of yeast clones, each uniquely fingerprinted by gene copy numbers, plasmid integrations, other genomic rearrangements, protein expression levels, growth rate, and target product productivities. Τhe best clone in two strains produced 3.5 g L-1 nerolidol and ∼0.96 g L-1 valencene. Comparable genotypic and phenotypic variations were also generated through the integration of a yeast integrative plasmid lacking 2µ sequences. Our work shows that multiple factors, including plasmid integration status, subchromosomal location, gene copy number, sesquiterpene synthase expression level, and genome rearrangement, together play a complicated determinant role on the productivities of sesquiterpene product. Integration of yeast episomal/integrative plasmids may be used as a versatile method for increasing the diversity and optimizing the efficiency of yeast cell factories, thereby uncovering metabolic control mechanisms.


Subject(s)
Saccharomyces cerevisiae , Sesquiterpenes , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Plasmids/genetics , Sesquiterpenes/metabolism , Metabolic Engineering/methods
3.
Adv Sci (Weinh) ; 10(32): e2303415, 2023 11.
Article in English | MEDLINE | ID: mdl-37750486

ABSTRACT

Enzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.


Subject(s)
Sesquiterpenes , Sesquiterpenes/metabolism , Metabolic Networks and Pathways
4.
Nat Nanotechnol ; 18(11): 1327-1334, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37500780

ABSTRACT

The construction and assembly of artificial allosteric protein switches into information and energy processing networks connected to both biological and non-biological systems is a central goal of synthetic biology and bionanotechnology. However, designing protein switches with the desired input, output and performance parameters is challenging. Here we use a range of reporter proteins to demonstrate that their chimeras with duplicated receptor domains produce YES gate protein switches with large (up to 9,000-fold) dynamic ranges and fast (minutes) response rates. In such switches, the epistatic interactions between largely independent synthetic allosteric sites result in an OFF state with minimal background noise. We used YES gate protein switches based on ß-lactamase to develop quantitative biosensors of therapeutic drugs and protein biomarkers. Furthermore, we demonstrated the reconfiguration of YES gate switches into AND gate switches controlled by two different inputs, and their assembly into signalling networks regulated at multiple nodes.

5.
Metab Eng ; 77: 143-151, 2023 05.
Article in English | MEDLINE | ID: mdl-36990382

ABSTRACT

The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Geranyltranstransferase/genetics , Proteomics , Sesquiterpenes/metabolism , Alkyl and Aryl Transferases/genetics , Terpenes
7.
Trends Biotechnol ; 41(1): 19-26, 2023 01.
Article in English | MEDLINE | ID: mdl-35918219

ABSTRACT

Biological homeostasis is a dynamic and elastic equilibrium of countless interlinked biochemical reactions. A key goal of life sciences is to understand these dynamics; bioengineers seek to reconfigure such networks. Both goals require the ability to monitor the concentration of individual intracellular metabolites with sufficient spatiotemporal resolution. To achieve this, a range of protein or protein/DNA signalling circuits with optical readouts have been constructed. Protein biosensors can provide quantitative information at subsecond temporal and suborganelle spatial resolution. However, their construction is fraught with difficulties related to integrating the affinity- and selectivity-endowing components with the signal reporters. We argue that development of efficient approaches for construction of chemically induced dimerisation systems and reporter domains with large dynamic ranges will solve these problems.


Subject(s)
Biosensing Techniques , Proteins , Proteins/metabolism
8.
ACS Synth Biol ; 11(8): 2709-2718, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35880829

ABSTRACT

Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.


Subject(s)
Bacteriophage P22 , Bacteriophage P22/metabolism , Biocatalysis , Capsid Proteins/genetics , Capsid Proteins/metabolism , Catalysis , Nanotechnology
9.
Methods Enzymol ; 670: 235-284, 2022.
Article in English | MEDLINE | ID: mdl-35871838

ABSTRACT

Isoprenoids, also known as terpenes or terpenoids, are a very large and diverse group of natural compounds. These compounds fulfil a myriad of critical roles in biology as well as having a wide range of industrial uses. Isoprenoids are produced via two chemically distinct metabolic pathways, the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. Downstream of these two pathways is the shared prenyl phosphate pathway. Because of their importance in both basic physiology and industrial biotechnology, extraction, identification, and quantification of isoprenoid pathway intermediates is an important protocol. Here we describe methods for extraction and analysis of intracellular metabolites from the MVA, MEP, and prenyl phosphate pathways for five key model microbes: the yeast Saccharomyces cerevisiae, the bacterium Escherichia coli, the diatom Phaeodactylum tricornutum, the green algae Chlamydomonas reinhardtii, and the cyanobacterium Synechocystis sp. PCC 6803. These methods also detect several central carbon intermediates. These protocols will likely work effectively, or be readily adaptable, to a variety of related microorganisms and metabolic pathways.


Subject(s)
Cyanobacteria , Terpenes , Cyanobacteria/metabolism , Escherichia coli/metabolism , Eukaryota/metabolism , Mevalonic Acid/metabolism , Phosphates/metabolism , Terpenes/metabolism
10.
New Phytol ; 235(5): 1900-1912, 2022 09.
Article in English | MEDLINE | ID: mdl-35644901

ABSTRACT

The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.


Subject(s)
Gene Duplication , Poaceae , Heterocyclic Compounds, 3-Ring , Lactones/metabolism , Phylogeny , Plant Growth Regulators/metabolism , Poaceae/genetics , Poaceae/metabolism
11.
FEBS J ; 289(21): 6672-6693, 2022 11.
Article in English | MEDLINE | ID: mdl-35704353

ABSTRACT

Cyanobacteria are photosynthetic prokaryotes with strong potential to be used for industrial terpenoid production. However, the key enzymes forming the principal terpenoid building blocks, called short-chain prenyltransferases (SPTs), are insufficiently characterized. Here, we examined SPTs in the model cyanobacteria Synechococcus elongatus sp. PCC 7942 and Synechocystis sp. PCC 6803. Each species has a single putative SPT (SeCrtE and SyCrtE, respectively). Sequence analysis identified these as type-II geranylgeranyl pyrophosphate synthases (GGPPSs) with high homology to GGPPSs found in the plastids of green plants and other photosynthetic organisms. In vitro analysis demonstrated that SyCrtE is multifunctional, producing geranylgeranyl pyrophosphate (GGPP; C20 ) primarily but also significant amounts of farnesyl pyrophosphate (FPP, C15 ) and geranyl pyrophosphate (GPP, C10 ); whereas SeCrtE appears to produce only GGPP. The crystal structures were solved to 2.02 and 1.37 Å, respectively, and the superposition of the structures against the GGPPS of Synechococcus elongatus sp. PCC 7002 yield a root mean square deviation of 0.8 Å (SeCrtE) and 1.1 Å (SyCrtE). We also discovered that SeCrtE is co-encoded in an operon with a functional GGPP phosphatase, suggesting metabolic pairing of these two activities and a putative function in tocopherol biosynthesis. This work sheds light on the activity of SPTs and terpenoid synthesis in cyanobacteria. Understanding native prenyl phosphate metabolism is an important step in developing approaches to engineering the production of different chain-length terpenoids in cyanobacteria.


Subject(s)
Dimethylallyltranstransferase , Synechococcus , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Phosphoric Monoester Hydrolases , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Synechococcus/genetics , Synechococcus/metabolism
12.
Nat Commun ; 13(1): 2895, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610221

ABSTRACT

Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAmp, a method that uses haploinsufficiency as evolutionary force to drive in vivo gene amplification. HapAmp enables efficient, titratable, and stable integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The method is exemplified in metabolic engineering to significantly improve production of the sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene titre is improved by 20-fold in a single engineering step, delivering ∼1 g L-1 in the flask cultivation. We also show a significant increase in heterologous protein production in yeast. HapAmp is an efficient approach to unlock metabolic bottlenecks rapidly for development of microbial cell factories.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Amplification , Limonene/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
13.
Commun Biol ; 5(1): 135, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173283

ABSTRACT

Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Metabolic Engineering , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Terpenes/metabolism
15.
Microb Biotechnol ; 14(6): 2254-2256, 2021 11.
Article in English | MEDLINE | ID: mdl-34792854

Subject(s)
Synthetic Biology
16.
ACS Sens ; 6(10): 3596-3603, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34637274

ABSTRACT

Enzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors. Here, we propose a new concept where protease biosensors with a tunable input uncage a signaling peptide, which can then transmit a signal to an allosteric protein reporter. We demonstrate that both the cage and the regulatory domain of the reporter can be constructed from the same peptide-binding domain, such as calmodulin. To demonstrate this concept, we constructed a proteolytic rapamycin biosensor and demonstrated its quantitative actuation on fluorescent, luminescent, and electrochemical reporters. Using the latter, we constructed sensitive bioelectrodes that detect the messenger peptide release and quantitatively convert the recognition event into electric current. We discuss the application of such systems for the construction of in vitro sensory arrays and in vivo signaling circuits.


Subject(s)
Biosensing Techniques , Calmodulin , Calmodulin/metabolism , Peptide Hydrolases , Proteolysis , Signal Transduction
17.
ACS Synth Biol ; 10(12): 3251-3263, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34591448

ABSTRACT

Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast (Saccharomyces cerevisiae) with Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.


Subject(s)
Polyomavirus , Saccharomyces cerevisiae , Animals , Capsid Proteins/metabolism , Glucaric Acid/metabolism , Inositol Oxygenase/metabolism , Metabolic Networks and Pathways , Mice , Polyomavirus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
18.
Microb Biotechnol ; 14(6): 2627-2642, 2021 11.
Article in English | MEDLINE | ID: mdl-34499421

ABSTRACT

The yeast Saccharomyces cerevisiae uses the pyruvate dehydrogenase-bypass for acetyl-CoA biosynthesis. This relatively inefficient pathway limits production potential for acetyl-CoA-derived biochemical due to carbon loss and the cost of two high-energy phosphate bonds per molecule of acetyl-CoA. Here, we attempted to improve acetyl-CoA production efficiency by introducing heterologous acetylating aldehyde dehydrogenase and phosphoketolase pathways for acetyl-CoA synthesis to enhance production of the sesquiterpene trans-nerolidol. In addition, we introduced auxin-mediated degradation of the glucose-dependent repressor Mig1p to allow induced expression of GAL promoters on glucose so that production potential on glucose could be examined. The novel genes that we used to reconstruct the heterologous acetyl-CoA pathways did not sufficiently complement the loss of endogenous acetyl-CoA pathways, indicating that superior heterologous enzymes are necessary to establish fully functional synthetic acetyl-CoA pathways and properly explore their potential for nerolidol synthesis. Notwithstanding this, nerolidol production was improved twofold to a titre of ˜ 900 mg l-1 in flask cultivation using a combination of heterologous acetyl-CoA pathways and Mig1p degradation. Conditional Mig1p depletion is presented as a valuable strategy to improve the productivities in the strains engineered with GAL promoters-controlled pathways when growing on glucose.


Subject(s)
Saccharomyces cerevisiae , Sesquiterpenes , Acetyl Coenzyme A , Indoleacetic Acids , Metabolic Engineering , Saccharomyces cerevisiae/genetics
19.
Synth Biol (Oxf) ; 6(1): ysaa026, 2021.
Article in English | MEDLINE | ID: mdl-33817343

ABSTRACT

A biofoundry provides automation and analytics infrastructure to support the engineering of biological systems. It allows scientists to perform synthetic biology and aligned experimentation on a high-throughput scale, massively increasing the solution space that can be examined for any given problem or question. However, establishing a biofoundry is a challenging undertaking, with numerous technical and operational considerations that must be addressed. Using collated learnings, here we outline several considerations that should be addressed prior to and during establishment. These include drivers for establishment, institutional models, funding and revenue models, personnel, hardware and software, data management, interoperability, client engagement and biosecurity issues. The high cost of establishment and operation means that developing a long-term business model for biofoundry sustainability in the context of funding frameworks, actual and potential client base, and costing structure is critical. Moreover, since biofoundries are leading a conceptual shift in experimental design for bioengineering, sustained outreach and engagement with the research community are needed to grow the client base. Recognition of the significant, long-term financial investment required and an understanding of the complexities of operationalization is critical for a sustainable biofoundry venture. To ensure state-of-the-art technology is integrated into planning, extensive engagement with existing facilities and community groups, such as the Global Biofoundries Alliance, is recommended.

20.
Nat Commun ; 12(1): 1051, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594068

ABSTRACT

In metabolic engineering, loss-of-function experiments are used to understand and optimise metabolism. A conditional gene inactivation tool is required when gene deletion is lethal or detrimental to growth. Here, we exploit auxin-inducible protein degradation as a metabolic engineering approach in yeast. We demonstrate its effectiveness using terpenoid production. First, we target an essential prenyl-pyrophosphate metabolism protein, farnesyl pyrophosphate synthase (Erg20p). Degradation successfully redirects metabolic flux toward monoterpene (C10) production. Second, depleting hexokinase-2, a key protein in glucose signalling transduction, lifts glucose repression and boosts production of sesquiterpene (C15) nerolidol to 3.5 g L-1 in flask cultivation. Third, depleting acetyl-CoA carboxylase (Acc1p), another essential protein, delivers growth arrest without diminishing production capacity in nerolidol-producing yeast, providing a strategy to decouple growth and production. These studies demonstrate auxin-mediated protein degradation as an advanced tool for metabolic engineering. It also has potential for broader metabolic perturbation studies to better understand metabolism.


Subject(s)
Indoleacetic Acids/pharmacology , Metabolic Engineering , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Terpenes/metabolism , Bacterial Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Coenzyme A Ligases/metabolism , Glucose/metabolism , Hexokinase/metabolism , Limonene/metabolism , Metabolic Flux Analysis , Polyisoprenyl Phosphates/metabolism , Proteolysis/drug effects , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Sesquiterpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...